Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

(2,2'-Bipyridine- $\left.\kappa^{2} N, N^{\prime}\right)(2,3-$ naphtha-lenediolato- $\kappa^{2} O, O^{\prime}$) palladium(II) and ($2,2^{\prime}$-biquinoline- $\kappa^{2} N, N^{\prime}$)(2,3-naph-thalenediolato- $\boldsymbol{\kappa}^{2} \mathbf{O}, O^{\prime}$)palladium(II)

Nobuo Okabe,* Kana Hagihara, Mamiko Odoko and Yasunori Muranishi

Faculty of Pharmaceutical Sciences, Kinki University, Kowakae 3-4-1, Higashiosaka, Osaka 577-8502, Japan
Correspondence e-mail: okabe@phar.kindai.ac.jp
Received 15 January 2004
Accepted 3 February 2004
Online 11 March 2004
In the title compounds, $\left[\mathrm{Pd}\left(\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{O}_{2}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]$, (I), and $\left[\mathrm{Pd}\left(\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{O}_{2}\right)\left(\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\right]$, (II), each $\mathrm{Pd}^{\text {II }}$ atom has a similar distorted cis-planar four-coordination geometry involving two O atoms of the 2,3-naphthalenediolate dianion and two N atoms of the $2,2^{\prime}$-bipyridine or $2,2^{\prime}$-biquinoline ligand. The overall structure of (I) is essentially planar, but that of (II) is not, as a result of intramolecular overcrowding leading to bowing of the biquinoline ligand.

Comment

Recently, the palladium complex $[\mathrm{Pd}(\mathrm{bpy})(\mathrm{cbdca})]$ (bpy is $2,2^{\prime}$-bipyridine and cbdca is the 1,1 -cyclobutanedicarboxylate ligand), with a cis-square-planar coordination geometry, has been shown to have better cytotoxic activity than cisplatin [cisdiamminedichloroplatinum(II)] against P_{388} lymphocytic leukemia cells (Mansuri-Torshizi et al., 2001). The planar aromatic ligands interact with DNA, which is the principal target in the chemotherapy of tumors (Neidle et al., 1987; Cusumano \& Giannetto, 1997; Shehata, 2001).

In the present study, we have prepared two cis-coordinated ternary complexes of $\mathrm{Pd}^{\mathrm{II}}$, namely the title complexes $[\mathrm{Pd}-$ (bpy)(nad)], (I), and $[P d(b i q)(n a d)]$, (II), with the aromatic ligands bpy, 2,2'-biquinoline (biq) and 2,3-naphthalenediol (nad), and determined their structures. The same complexes were synthesized previously by a different method for electrochemical studies into their use as photosensitizers in inorganic photochemistry (Kamath et al., 1989). Structures have been determined for complexes of nad with Si (Holmes et al., 1985; Strohmann et al., 1991; Tacke et al., 1991, 1993; Sperlich et al., 1993), Fe (Jüstel et al., 1999), Ge (Tacke et al., 1994), Rb (Yang et al., 1997), Mo (Mondal et al., 1988; El-Hendawy et al., 1989; Kang et al., 1989) and Sb (Holmes et al., 1987). The present study is the first determination of the crystal structures of Pd complexes with nad.

The central Pd atoms of (I) and (II) have the same distorted cis-square-planar coordination geometry, involving the two heterocyclic N atoms and the two O atoms of the nad dianion (Figs. 1 and 2). The overall structure of (I) is essentially planar, with atom C14 of the bpy ligand showing the maximum deviation from the mean molecular plane $[0.085$ (3) \AA].

(I)

(II)

In contrast, the overall structure of (II) is not planar; the dihedral angle between the biq and $\operatorname{Pd}($ nad) planes is 148.73 (7) ${ }^{\circ}$. In the square-planar coordination, atoms Pd1, N1, $\mathrm{N} 2, \mathrm{O} 1$ and O 2 deviate by 0.0055 (1), -0.135 (3), -0.073 (3), -0.093 (3) and -0.167 (3) A, respectively, from the plane through these five atoms. The $\operatorname{Pd}(n a d)$ moiety, including the square-planar coordination plane, is mostly planar, the maximum deviation from the plane being that of atom C26 [0.139 (7) A $]$. The biq molecule is bowed in order to relieve intramolecular overcrowding between biq moieties (C9-H9 and $\mathrm{C} 19-\mathrm{H} 19$) and nad atoms (O1 and O2). The H9 . . O1 and $\mathrm{H} 19 \cdots \mathrm{O} 2$ separations are 2.23 and $2.28 \AA$, respectively. As a result, the angle between the two quinoline ring planes is 19.9 (1) ${ }^{\circ}$.

The $\mathrm{Pd}-\mathrm{O}$ bond lengths in (I) and (II) are similar, but the $\mathrm{Pd}-\mathrm{N}$ distances in (I) are slightly shorter than those in (II). The values can be compared with those reported for $[\mathrm{Pd}-$ $\left(\mathrm{NH}_{3}\right)_{2}$ (cbdca)], (III) (Barnham et al., 1994), [Pd(en)(cbdca)], (IV) (en is ethylenediamine; Tercero et al., 2003), and [Pd(cat)(phen)], (V) (cat is cathecholate and phen is 1,10phenanthroline; Okabe et al., 2003), since the central Pd atoms

Figure 1
The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are shown at the 50% probability level.

Figure 2
The molecular structure of (II), with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are shown at the 50% probability level.
of all of these compounds have the same distorted cis-squareplanar coordination geometry, with the formula $[\mathrm{Pd}(\mathrm{NN})$ (OO)]. The $\mathrm{Pd}-\mathrm{N}$ bonds in (I) are slightly shorter than those in (III) and (IV) [2.020 (7)-2.030 (2) \AA], and are nearly the same as those in (V) $[2.003$ (2)-2.019 (2) $\AA]$. The $\mathrm{Pd}-\mathrm{N}$ distances in (II) are slightly longer than those in (III)-(V). The $\mathrm{Pd}-\mathrm{O}$ bond lengths in (I) and (II) are also slightly shorter than those in (III) and (IV) [2.005 (2)-2.017 (6) A] , and nearly the same as those in (V) $[1.981$ (2)-1.989 (2) \AA]. It thus appears that the coordination bonds in (I) are stronger than those in (III) and (IV), and nearly identical to those in (V). The $\mathrm{Pd}-\mathrm{N}$ bonds in (II) are the weakest of all, possibly as a result of intramolecular steric hindrance between the O atoms of the nad molecule and the H atoms attached to atoms C 9 and C19 of the biq molecule, as noted above.

The $\mathrm{O}-\mathrm{Pd}-\mathrm{O}$ angles in the five-membered rings in (I) and (II) are small compared with those in the six-membered rings of (III) and (IV) [90.9-92.69 (7) ${ }^{\circ}$], and are slightly smaller

Figure 3
A stereoview of the packing in (I), showing the ring interactions.

Figure 4
A stereoview of the packing of (II), showing the ring and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions
than that reported for the five-membered ring in (V) [85.09 (7) ${ }^{\circ}$]. The $\mathrm{N}-\mathrm{Pd}-\mathrm{N}$ angles in (I) and (II) are also smaller than those in (IV) [84.15 (8) ${ }^{\circ}$ for en] and (III) (95.0 ${ }^{\circ}$ for $\mathrm{NH}_{3} \mathrm{PdNH}_{3}$), and slightly smaller than that in (V) [81.69 (8) ${ }^{\circ}$ for cat].

The crystal structure of (I) is stabilized by centrosymmetric stacking interactions between molecules at $(1-x,-y, 1-z)$, $(x, y, z),(1-x, 1-y, 1-z),(x, 1+y, z)$ etc., as shown in Fig. 3, the shortest separations being $\operatorname{Pd} 1 \cdots \mathrm{C} 26(1-x, 1-y$, $1-z$) of $3.391(2) \AA$ and $\mathrm{Pd} 1 \cdots \mathrm{C} 12(1-x,-y, 1-z)$ of 3.414 (2) \AA. The crystal structure of (II) exhibits interactions between inversion-related molecules, as shown in Fig. 4, the shortest separations being $\operatorname{Pd} 1 \cdots \mathrm{C} 3(1-x,-y, 1-z)$ of 3.219 (6) \AA and $\mathrm{Pd} 1 \cdots \mathrm{C} 30(2-x,-y, 1-z)$ of $3.449(5) \AA$. These stacks are then connected by $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) interactions $[\mathrm{H} 6 \cdots \mathrm{Cg} 1=2.50 \AA, \mathrm{C} 6 \cdots C g 1=3.43 \AA$ and $\mathrm{C} 6-$ $\mathrm{H} 6 \cdots C g 1=176^{\circ} ; C g 1$ is the centroid of the C23-C28 ring at $\left.\left(\frac{3}{2}-x,-\frac{1}{2}+y, \frac{5}{2}-z\right)\right]$.

Experimental

For the preparation of (I), bpy was reacted with palladium acetate, $\left[\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)_{2}\right]$, for 30 min at room temperature (molar ratio 2:3) in dimethylformamide (DMF), and then nad (equivalent to bpy) dissolved in DMF was added. This mixture was left to stand at room temperature, and red plate-shaped crystals appeared after a few days. Complex (II) was synthesized by a similar method, except that biq was used instead of bpy. Colorless prismatic crystals appeared after a few days.

Compound (I)

Crystal data

$\left[\mathrm{Pd}\left(\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{O}_{2}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]$
$D_{x}=1.754 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=420.75$
Monoclinic, $P 2_{1} / c$
$a=12.117$ (2) \AA
$b=8.239$ (2) \AA
$c=16.857$ (1) \AA
$\beta=108.804(8)^{\circ}$
$V=1593.1$ (5) \AA^{3}
$Z=4$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=14.8-15.0^{\circ}$
$\mu=1.18 \mathrm{~mm}^{-1}$
$T=296.2 \mathrm{~K}$
Plate, red
$0.50 \times 0.20 \times 0.20 \mathrm{~mm}$

Data collection

Rigaku AFC-5R diffractometer $\omega-2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.936, T_{\text {max }}=1.000$
4095 measured reflections
3658 independent reflections
3090 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.014$

Refinement

Refinement on F^{2}
$R(F)=0.027$
$w R\left(F^{2}\right)=0.078$
$S=1.14$
3658 reflections
226 parameters
H -atom parameters constrained
Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$ for (I).

Pd1-O1	$1.981(3)$	Pd1-N1	$2.003(2)$
Pd1-O2	$1.984(2)$	Pd1-N2	$2.001(3)$
O1-Pd1-O2	$84.84(9)$	O2-Pd1-N1	$177.58(10)$
O1-Pd1-N1	$97.06(9)$	O2-Pd1-N2	$97.29(9)$
O1-Pd1-N2	$177.54(9)$	$\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{N} 2$	$80.78(9)$

Compound (II)

Crystal data

$\left[\mathrm{Pd}\left(\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{O}_{2}\right)\left(\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\right]$
$M_{r}=520.86$
Monoclinic, $P 2_{1} / n$
$a=9.859(5) \AA$
$b=19.67$ (1) \AA
$c=10.922$ (5) A
$\beta=94.33(4)^{\circ}$
$V=2112.0(18) \AA^{3}$
$Z=4$
$D_{x}=1.638 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Rigaku AFC-5R diffractometer $\omega-2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.917, T_{\text {max }}=0.998$
5278 measured reflections
4849 independent reflections
2647 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0556 P)^{2}\right] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=1.14 \mathrm{e}^{-3} \\
\Delta \rho_{\min }=-0.67 \mathrm{e}^{-3}
\end{gathered}
$$

$\theta_{\text {max }}=27.5^{\circ}$
$h=0 \rightarrow 15$
$k=0 \rightarrow 10$
$l=-21 \rightarrow 20$
3 standard reflections every 150 reflections intensity decay: 1.1%

Table 2
Selected geometric parameters ($\mathrm{A}^{\circ},^{\circ}$) for (II).

$\mathrm{Pd} 1-\mathrm{O} 1$	$1.992(4)$	$\mathrm{Pd} 1-\mathrm{N} 1$	$2.039(4)$
$\mathrm{Pd} 1-\mathrm{O} 2$	$1.982(4)$	$\mathrm{Pd} 1-\mathrm{N} 2$	$2.037(4)$
			$174.4(2)$
$\mathrm{O} 1-\mathrm{Pd} 1-\mathrm{O} 2$	$93.6(2)$	$\mathrm{O} 2-\mathrm{Pd} 1-\mathrm{N} 1$	$97.0(2)$
$\mathrm{O} 1-\mathrm{Pd} 1-\mathrm{N} 1$	$171.1(2)$	$\mathrm{O} 2-\mathrm{Pd} 1-\mathrm{N} 2$	$\mathrm{~N} 1-\mathrm{Pd} 1-\mathrm{N} 2$

Corporation, 2000); program(s) used to solve structure: SIR97 (Altomare et al., 1999) for (I) and SHELXS97 (Sheldrick, 1997) for (II); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1730). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Barnham, K. J., Djuran, M. I., Frey, U., Mazid, M. A. \& Sadler, P. J. (1994). J. Chem. Soc. Chem. Commun. pp. 65-66.

Cusumano, M. \& Giannetto, A. (1997). J. Inorg. Biochem. 65, 137-144.
El-Hendawy, A. M., Griffith, W. P., O’Mahoney, C. A. \& Williams, D. J. (1989). Polyhedron, 8, 519-525.
Holmes, R. R., Day, R. O., Chandrasekhar, V. \& Holmes, J. M. (1985). Inorg. Chem. 24, 2009-2015.
Holmes, R. R., Day, R. O., Chandrasekhar, V. \& Holmes, J. M. (1987). Inorg. Chem. 26, 157-163.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Jüstel, T., Müller, M., Weyhermüller, T., Kressl, C., Bill, E., Hildebrandt, P., Lengen, M., Grodzicki, M., Trautwein, A. X., Nuber, B. \& Wieghardt, K. (1999). Chem. Eur. J. 5, 793-810.

Kamath, S. S., Uma, V. \& Srivastava, T. S. (1989). Inorg. Chim. Acta, 166, 9198.

Kang, H., Liu, S., Shaikh, S. N., Nicholson, T. \& Zubieta, J. (1989). Inorg. Chem. 28, 920-933.
Mansuri-Torshizi, H., Ghadimy, S. \& Akbarzadeh, N. (2001). Chem. Pharm. Bull. 49, 1517-1520.
Molecular Structure Corporation (1992). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (2000). TEXSAN. Version 1.11. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Mondal, J. U., Schultz, F. A., Brennan, T. D. \& Scheidt, W. R. (1988). Inorg. Chem. 27, 3950-3956.
Neidle, S., Pearl, L. \& Skelly, J. V. (1987). Biochem. J. 243, 1-13.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Okabe, N., Muranishi, Y. \& Ajiyama, T. (2003). Acta Cryst. E59, m936-m938. Shehata, M. (2001). Transition Met. Chem. 26, 198-204.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Sperlich, J., Becht, J., Mühleisen, M., Wagner, S. A., Mattern, G. \& Tacke, R. (1993). Z. Naturforsch. Teil B, 48, 1693-1706.

Strohmann, C., Tacke, R., Mattern, G. \& Kuhs, W. F. (1991). J. Organomet. Chem. 403, 63-71.
Tacke, R., Lopez-Mras, A., Sheldrick, W. S. \& Sebald, A. (1993). Z. Anorg. Allg. Chem. 619, 347-358.
Tacke, R., Sperlich, J. \& Becker, B. (1994). Chem. Ber. 127, 643-646.
Tacke, R., Sperlich, J., Strohmann, C. \& Mattern, G. (1991). Chem. Ber. 124, 1491-1496.
Tercero, J. M., Matilla, A., Sanjuan, M. A., Moreno, C. F., Martin, J. D. \& Walmsley, J. A. (2003). Inorg. Chem. Acta, 342, 77-87.
Yang, K., Martin, J. A., Bott, S. G. \& Richmond, M. G. (1997). Inorg. Chim. Acta, 254, 19-27.

